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ABSTRACT

The hydrodynamic stability of a thermodiffusive interface in near supercritical

fluid is studied. The Navier Stokes equations written for a van der Waals gas set above

its critical point are solved by the means of a finite volume numerical method. The

growth rate of the fluctuations shows that it exists a cutoff wave number beyond which

the short wave lengths are stabilized by diffusion. The good agreement between the

obtained values and the recent theories for miscible fluids confirms that a near critical

fluid subjected to a thermal gradient may develop a gravitational instability for which the

density gradient is driven by thermal diffusion and high compressibility.

KEY WORDS: supercritical fluids, Rayleigh-Taylor instability, numerical

hydrodynamics, finite volume methods.
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1. INTRODUCTION

The week diffusivity of near critical pure fluids and their large compressibility

lead to very specific mechanisms of thermal homogenization. The Piston Effect which is

of thermoacoustic nature allows for a very fast thermal homogenization under zero

gravity conditions although the thermal diffusivity is very small. [1], [2], [3],[4],. Under

normal gravity conditions and for a side heated square-shaped cavity we have recently

shown that this mechanism is still responsible for heat equilibration [5]. We are interested

here to a different situation although it is also linked with the storage of cryogen’s and

more generally to the stability of diffusion fronts in miscible fluids. When one performs

the numerical modeling of a bottom-heated cavity filled with a supercritical fluid

(Rayleigh-Benard configuration), the lateral walls of which are insulated, while the top

wall is thermostated at the initial temperature, thermal plumes are forming over the

bottom wall. As the bulk is homogeneously heated by the Piston Effect, a cooling

thermal boundary layer forms along the upper wall [6]. This layer of fluid is heavier than

the fluid located below and gives thus birth to droplets as shown in Fig. 1. The

mechanism of formation of these droplets looks like a Rayleigh-Taylor instability. We

thus oriented our investigations towards a diffusion front instability, analogous to the one

encountered in miscible fluids [7], [8], [9], [10],. We have considered a simpler situation

(see Fig. 2) in which the upper half part of a square-shaped isobaric cavity of infinite

extension filled with a near supercritical fluid at rest is some mK cooler than the bottom

half part. The top and bottom walls are at constant initial temperature. This work aims to

perform the numerical stability study of the thermal diffusion interface which is present
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between the two half parts of the cavity. To this end we use the technique which consists

in studying the dynamics of growth of fluctuations of a fluid property at the interface.

2. MATHEMATICAL MODEL

The model is identical to the one used in [5], and is merely repeated here. The

Navier Stokes equations are those describing a Newtonian, viscous and

hypercompressible pure fluid. The equation of state is the van der Waals equation.

Pressure is normalized with respect to the one that would exist for an ideal gas at critical

conditions. The other variables are referred to their critical value. The characteristic time

is taken as the Piston Effect characteristic time (which is between the acoustic and the

diffusion times) (see ref. [5] ). The governing equations thus write under the following

form:
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where λ , Cv  et �µ  are respectively the heat conductivity, the specific heat at constant

volume and the dynamical viscosity reported to their ideal gas value. Those expression of

course do not describe the real critical behavior of a critical fluid but correspond to a

mean field theory which is correct enough to study phenomenology and not to perform

quantitative comparisons with experimental results.

The van der Waals equation write under the following non dimensional form:
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where a=9/8 et b=1/3 are given by the expression of the critical coordinates.

The fluids is initially at rest and stratification is neglected since the distance to the critical

point is not smaller than 1 K. The initial conditions for the upper layer are:
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while the variables with prime are dimensional ones. For the lower layer the initial

conditions are such that density is given while temperature is determined in such a way

pressure is homogeneous within the whole cavity:
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re ∆ �ε  corresponds to the given density difference between the two layers. On the

horizontal wall, the following boundary conditions are considered:
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For the lateral walls, periodic boundary conditions are considered, i.e. for any field

variable φ ( Temperature, velocity) the following relation still holds at any times:

φ φ λ( , , ) (� , , )0 y t y t=
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where �λ  represents the wave length of the initial perturbation the dynamics of which is

aimed to be studied. When the thermal constraint is suppressed, thermal diffusion which

is the driving force of the evolution begins to operate. As density is related to

temperature via the equation of state, a diffusive interface forms which is similar to the

one which would form between two miscible liquids. The fluctuations the dynamics of

which is to be studied are introduced under the form of an initial non zero velocity

written as:

v x y t A x( , . , ) cos ~= = =




0 5 0

2π
λ

Where A is the amplitude of the perturbation (A= 10-2).

3. THE NUMERICAL METHOD

the governing equations are discretized by a finite volume method and a

SIMPLER type algorithm [11], [12] is used to solve the obtained system. The numerical

scheme is of first order in time and the discretisation in space uses Patankar’s power

lower scheme. A non uniform staggered grid is used to take into account the presence of

huge initial gradients at the interface. The grid is uniform in the x direction. The acoustic

filtering procedure is used to reduce computational cost [5], [12], because the

calculations are performed on the Piston Effect time scale : on that time scale, the

pressure can be separated into two parts [13], one which is homogeneous plus a small

non homogeneous acoustic perturbation which can be filtered at first order. The dynamic

of growth of the fluctuations, that is to say the determination of rate of growth σ(k),

where k is the wave number of the initial perturbation, is determined in the following

way: after sampling two values of a field variable (the velocity for instance) at a grid
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point for two different times t1 et t2, one determine σ(k) in writing that the velocity

depends exponentially on time that is to say that:
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from which one can extract σ(t, k) from:
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The value of σ(k) which corresponds to the linear regime under study is considered to be

the one corresponding to the plateau zone of the time history of σ(t) for which A1 and A2

do not depend on time.

4. RESULTS AND DISCUSSION.

The calculations are performed for a cavity filled with CO2 at critical density the

temperature of the upper part of which is 1K above the critical temperature. This value

determines the value of the transport coefficients, the other variations being only

perturbations. The density difference between the upper and the lower parts of the cavity

is directly related to the temperature difference and compressibility. Two non

dimensional density differences are studied, 10-2 and 10-3 , that correspond respectively to

temperature differences of 15.2 and 1.49 mK. The values of the kinematic viscosity and

thermal diffusivity at 1 K above the critical point are respectively ν   = 4,48 10-4  cm2/s

and κ = 0.86 10-4  cm2/s.

The values of σ(k) are reported on Fig. 3. One can point out first that it exists a

cutoff wave number beyond which the small wave lengths are damped by diffusion. This
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is agreement with the conclusions of recent works [7], [9], [14], following which taking

into account both viscosity and diffusion make it  necessary for a cutoff wave number to

be put in evidence which is equal to:

~
/
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from [9]

where D is the interdiffusion coefficient for miscible fluids ( which is replaced in our case

by the thermal diffusion coefficient), g the gravity value and R = −
+

ρ ρ
ρ ρ

1 2

1 2

.

Table 1 compares the cutoff values obtained by the present numerical simulations with

the one deduced from the abovementioned formulas.

Fig. 4 shows the temperature field at a given time (t’= 1 s) for an initial perturbation

wavelength �λ =0.1 that gives a high growth rate. It must be emphasized here that the

values of the Schmidt number for the critical fluid is of order 10 whereas it is of order

103 for usual miscible liquids. This is due to the strong decrease of the kinematic

viscosity, the thermal diffusivity of the critical fluid, although weak for a gas, being two

orders of magnitude higher that mass diffusion in miscible liquids. The length scale

associated with the micro-drops formed by the instability is thus small and it appears that

the thermal homogenization process of a supercritical fluid on ground may undergo a

micro mixing phase: micro-drops are formed that then relax by diffusion. The measured

homogenization time may thus appear much smaller than the one calculated on the cell

length scale. The present calculations have to be completed now by a systematic study as

a function of the distance to the critical point as well as by a linear stability analysis.[15]
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FIGURE CAPTIONS.

Table 1 :  Cutoff wavelength as a function of the density difference.

Figure 1 : Temperature difference (T'-T'0) in K for a square-shaped cavity heated from

below initially at 1K from the critical point and 8.3 s after a 10 mK increase in

temperature, from Ref. [6].

Figure 2 : The 2-D Model.

Figure 3 : Instability growth rate as a function of the wave number for ∆ρ= 0.01 (4.678

Kg/m3 ) and ∆ρ = 0.01. (the initial temperature is 1K above the critical point).

Figure 4 : Temperature difference 1 s after the thermal constrainst has been suppressed

(the wave length of the initial perturbation is �λ '=1 mm).










